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Modeling of Conductor Loss in Coplanar Circuit
Elements by the Method of Lines

Larissa Vietzorreck,Member, IEEE,and Wilfrid Pascher,Member, IEEE

Abstract— The small dimensions of coplanar waveguides
(CPW’s) require due consideration of finite conductivity and
metallization thickness. For this purpose, an efficient method
of lines (MoL) approach for full-wave analysis of microstrip
discontinuities is considerably extended. Two alternative models
for the conductor loss are employed depending on the skin
depth. Their respective region of validity is investigated and
the current distribution in the center conductor of a CPW is
given. Several cascaded discontinuities including a coplanar
quarter-wave transformer and a short-end series stub in a
microshield line are characterized.

Index Terms—Coplanar waveguides, discontinuities, finite con-
ductivity, finite difference methods, method of lines, resistive
boundary condition.

I. INTRODUCTION

COPLANAR waveguides (CPW’s) have received increas-
ing attention as they possess several advantages over

the conventional microstrip lines for monolithic microwave
integrated circuit (MMIC) applications. However, finite con-
ductivity and metallization thickness strongly affect the elec-
trical performance of a CPW circuit when the transverse
dimensions are of the order of the skin depth. The propagation
characteristics of various lossy CPW transmission lines have
been previously investigated [1]–[3]. In order to achieve high-
performance low-cost CPW components, an accurate full-wave
analysis of composite structures containing discontinuities
and/or three–dimensional (3-D) elements is necessary. Sin-
gle discontinuities with perfectly conducting metallization of
finite thickness have been analyzed [4], [5], but only few
papers (e.g., [6]) have taken the conductor loss of cascaded
discontinuities into account.

In recent publications, various planar transmission lines
have been investigated using the method of lines (MoL) [7],
[8], mostly employing a one-dimensional (1-D) discretization.
Losses and finite conductor thickness have been considered
for longitudinally homogeneous lines [9], [10]. Another MoL
approach using a two-dimensional (2-D) discretization dealt
with the investigation of CPW discontinuities, assuming thin
and perfect conductors [11]. This approach was restricted to
simple structures consisting of a few steps, because of the
perpendicular orientation of the discretization lines to the
substrate. Recently, an efficient algorithm has been developed
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Fig. 1. Cascaded CPW element.

for investigation of 3-D microstrip discontinuities [12]. The
discretization of the cross section combined with an analytical
calculation in propagation direction makes this approach very
well suited for treatment of cascaded elements.

In this paper, cascaded coplanar discontinuities (see Fig. 1)
are analyzed using two alternative models for finite conduc-
tivity. In the first model, the conductor losses are incorporated
using a self-consistent description of the conductor as a di-
electric medium with a large imaginary part of the permittivity
[1]. Unlike the longitudinally homogeneous lines [9], [10], a
2-D discretization of the cross section is necessary for the
analysis of discontinuities. This model is very well suited for
the analysis of structures with metallization thickness larger
or commensurate with the skin depth.

The second model is used in case of a very thin metallization
(e.g. evaporated gold films of 200-nm thickness) where the
thickness is less than the skin depth. The full discretization
of such thin strips would severely and unnecessarily increase
the required memory and computation time. The skin effect
is irrelevant and the electrical field can be treated as homo-
geneous inside the metallic strips. Under these assumptions,
resistive boundary conditions [13], [14] are valid and are used
to model the electromagnetic field. The most important feature
of this new approach is the introduction of modified difference
operators.

II. THEORY

In the recently introduced approach for the analysis of
cascaded microstrip discontinuities, the metallic strips are
considered as perfect conductors [12]. They are excluded
from the solution domain and from discretization. Hence, the
difference operators are reduced and the surfaces of the strips
are regarded as electric walls.

However, in the first conductor model based on the complex
permittivity, not only the air and the substrate, but also the
whole cross section of the conductors is discretized. Therefore,
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the interfaces metal–air and metal–substrate are also treated as
dielectric interfaces. The field and the current distribution are
calculated inside the metallic strip, which may be arbitrarily
thick. The difference operators are established for every point
in the cross section and no reduction takes place. This rigorous
approach considers the skin-effect correctly.

In the second conductor model, we assume a very small con-
ductor thickness. The surface current density is proportional
to the tangential electric field. As a consequence, the electric
and magnetic field components are coupled with each other
and fulfill resistive boundary conditions [13]. As in the case
of perfect conductors, the strips themselves are excluded from
the solution domain and the difference operators are reduced.
Additionally, novel boundary conditions at the strips cause a
modification of the corresponding elements of the difference
operators.

In the following analysis, we first summarize the general
potential and field equations valid for perfect conductors
as well as for the two loss models. Then we use resistive
boundary conditions to establish the novel modified difference
operators for the loss model using thin conductors.

A. Basic Equations

In each longitudinally homogeneous section, the electro-
magnetic field is derived from a vector potential:

(1)

where and fulfill coupled differential equations of the
Sturm–Liouville type [8], [12]:

(2)

(3)

The electromagnetic field components are given by

(4)

(5)

(6)

(7)

(8)

(9)

where a free-space wavenumber , and a free-space
impedance have been assumed.

Fig. 2. Discretization scheme of the cross section near a metallic strip with
four different line systems:�, �, , 4.

The cross section of each section is now subjected to a
2-D discretization, the solution in propagation direction being
analytical. For simplicity, only equidistant discretization is
used to demonstrate the analysis. However, nonequidistant
discretization is employed in the computer algorithm. We use
four different line systems for the potentials and and
their derivatives (see Fig. 2).

The derivatives are determined by means of difference
operators, e.g.,

(10)

with

...
...

...
...

(11)

near a perfectly conducting metallic strip.

B. Resistive Boundary Conditions

In the following analysis, we shall establish these difference
operators for cross sections containing thin lossy metallic
strips. We need appropriate boundary conditions for the com-
ponents and of the Hertz potential at the strips. For thin
conductors the following resistive boundary conditions

(12)

with the strip thickness and the conductivity hold. Addi-
tionally, , , , and are continuous at the conducting
strips.

First the modified difference operator for computing
near the strip is derived. It is needed for both

differential equations (2) and (3) and for . For the evaluation
of , the value of at the strip, namely (see
Fig. 2) is necessary. Since the metallic strip is treated as
a resistive wall at and excluded from the solution
domain, we do not know the value and we have to use the
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resistive boundary condition (12) to determine it. Expressing
the magnetic field components in (12) by means of the Hertz
potential through (5) and (6) yields

(13)

(14)

To eliminate the electric field components, we take the deriva-
tive of (13) with respect to and substitute it into (14) using
(8) and (9). To take into account the derivative with respect to

the forward and backward propagating waves are considered
separately. As the result is exactly the same for both waves,
it is also valid for any linear combination. All the terms
containing and cancel and we obtain

(15)

As the derivative is not known at , it must be
linearly extrapolated from the values and (on the grid
points in Fig. 2) together with the still unknown (in-
dicated by a larger symbol). Similarly is determined.
Thus, employing a linear extrapolation of above and
below the strip, we derive a finite-difference expression for
the left-hand side of (15), which finally yields the extrapolated
potential on the metallic strip as follows:

(16)

with

(17)

With this expression we are able to fill in the missing values
in the modified difference operator used for , shown
in (18), at the bottom of the page.

In the next step, we need on the strip for com-
puting at and near the edges of the strip.
The calculation is done via using (9). We use a linear
extrapolation of to obtain and at the strip. Inserting
the values in (13), we obtain and also

(19)

This finite-difference expression is also used for the wave
equations (2) and (3). The corresponding modified difference
operator exhibits a similar structure as in (18).

The difference operator for and the ones derived
thereof do not differ from those in the case of perfect con-
ductors because they do not involve any discretization points
on the strip.

In the limiting case of perfect conduction, the modified
difference operators tend to the unmodified ones; e.g.,

, which employs a Dirichlet boundary
condition at the upper and lower side of the strips. The
modification of the difference operators affects all the potential
and some of the field equations.

Apart from using the modified difference operators, the
solution of the wave equation, the matching procedure, and the
cascading of the discontinuities by a generalized scattering-
matrix approach are carried out as for perfectly conducting
strips [12]. In this way, the approach presented here combines
the advantages of the original one [12], especially the analysis
of cascaded discontinuities, with the features of advanced
modeling for lossy conductors.

III. RESULTS

Using the two alternative conductor models proposed above
a great variety of lossy coplanar circuits can be analyzed. To
test the validity of the models we discuss some properties for
longitudinally homogeneous CPW’s before presenting results
for several circuit elements.

First, the variation of the attenuation constantwith the
conductor thickness is studied (Fig. 3) and compared with
results of a quasi-TEM approach [3]. The results obtained
by both models proposed in this paper are presented. For
the approximation with resistive boundary conditions and
modified difference operators , the agreement with [3] is
good if the thickness is less than the skin depth m,
but the values deviate for . The model using complex
permittivity gives good results also for larger, but with higher
computation time. The whole range of the thickness is covered,
combining the two models employed here.

In order to verify the model with complex , the longitu-
dinal component of the current density is examined. Fig. 4
shows inside the center conductor of a CPW corresponding
to Section II in Fig. 5. is given at the two distances ,
from the conductor’s edge and is normalized to its maximum
value at . The difference between the calculated skin
depth and the analytical value for an unbounded metallic
region is less than 10%.

A impedance transformer is chosen as an example for
a structure with thick lossy conductors. The influence of the

...
...

...
...

(18)
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Fig. 3. Variation of attenuation constant� of a CPW as a function of con-
ductor thicknesst (w=2 = 35 �m, s = 50 �m, "r = 12:9, � = 3:602 � 10

7

S/m, d = 200 �m, f = 20 GHz).

Fig. 4. Longitudinal componentiz of the current density in the center
conductor of a CPW at two different positionsy1 = 2:63 �m, y2 = 6:44 �m.
(w2 = 15 �m, d = 200 �m, "r = 12:9, � = 2 � 10

7 S/m, t = 3 �m).

finite conductivity and thickness is clearly seen in the shift of
the resonant frequency of the reflection coefficient as well as in
the decreasing amplitude of the transmission factor in Fig. 5.

The next example is a microshield short-end series stub
(Fig. 6) as proposed in [15]. The ohmic loss of the strips is
considered by both methods described in this paper and the
resulting scattering parameters are compared to the case of
perfect conductors. For lower frequencies, the results for the
different models agree very well. For increasing frequency,
when the skin depth becomes smaller compared to the conduc-
tor thickness, a deviation is visible. However, the performance
of the circuit element is much better described by the model
using thin lossy conductors than by the simplified model of
perfect conductors.

IV. CONCLUSION

Using the method proposed in this paper, various composite
CPW circuit elements are accurately analyzed. Conductor

Fig. 5. Magnitude of the scattering parameters of a CPW�=4 impedance
transformer (see Fig. 1) with lossy and finite conductors compared with results
by the mode-matching technique (MMT) [6].(w1 = 20 �m, w2 = 15 �m,
w3 = 8 �m, s1 = 5 �m, s2 = 10 �m, s3 = 17 �m, l = 3:104 mm,
d = 200 �m, "r = 12:9, � = 2 � 10

7 S/m, t = 3 �m).

Fig. 6. Magnitude of the scattering parameters of a microshield short-end
series stub (w = 25 �m, s = 250 �m, s2 = 80 �m, L = 2500 �m,
L2 = 200 �m, d = 350 �m, "r = 1:1, � = 3:6 � 10

7S/m, t = 0:5 �m).

losses, which can severely influence the performance of the
circuit, are fully taken into account. It is possible to choose
between two different ways of treating the finite conductivity
depending on the ratio of the conductor thickness to the skin
depth. The first model is based on complex permittivity for
comparatively thick conductors. The second one employs the
finite sheet admittance of thin conductors to derive special
modified difference operators. Since it is not necessary to
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discretize the small thickness of the metallic strips, an efficient
analysis is guaranteed for discontinuities in a great variety of
CPW’s.

The results for the attenuation constant and for the cur-
rent density of a CPW prove the validity of both proposed
models. The scattering parameters for a coplanar quarter-
wave transformer and a short-end series stub in a microshield
line computed by different analysis methods show very good
agreement.
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