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Modeling of Conductor Loss in Coplanar Circuit
Elements by the Method of Lines
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Abstract— The small dimensions of coplanar waveguides 1
(CPW's) require due consideration of finite conductivity and T - W
metallization thickness. For this purpose, an efficient method 0 a2 -
of lines (MoL) approach for full-wave analysis of microstrip 11 I
discontinuities is considerably extended. Two alternative models al
for the conductor loss are employed depending on the skin 1 .
depth. Their respective region of validity is investigated and I ' -
the current distribution in the center conductor of a CPW is il
given. Several cascaded discontinuities including a coplanar
quarter-wave transformer and a short-end series stub in a
microshield line are characterized. Fig. 1. Cascaded CPW element.

Index Terms—Coplanar waveguides, discontinuities, finite con-

ductivity, finite_qifference methods, method of lines, resistive for investigation of 3-D microstrip discontinuities [12]. The
boundary condition. . s . . . .
discretization of the cross section combined with an analytical
calculation in propagation direction makes this approach very
|. INTRODUCTION well suited for treatment of cascaded elements.

OPLANAR waveguides (CPW's) have received increas- In this paper, cascaded coplanar discontinuities (see Fig. 1)

ing attention as they possess several advantages o analyzed using two alternative models for finite conduc-
the conventional microstrip lines for monolithic microwavdiVity- In the first model, the conductor losses are incorporated
integrated circuit (MMIC) applications. However, finite conUSing & self-consistent description of the conductor as a di-
ductivity and metallization thickness strongly affect the ele@lectric medium with a large imaginary part of the permittivity
trical performance of a CPW circuit when the transverdd]- Unlike the longitudinally homogeneous lines [9], [10], a
dimensions are of the order of the skin depth. The propagatiér® discretization of the cross section is necessary for the
characteristics of various lossy CPW transmission lines haggalysis of discontinuities. This model is very well suited for
been previously investigated [1]-[3]. In order to achieve higﬁhe analysis of strugtures W|th metallization thickness larger
performance low-cost CPW components, an accurate full-wae commensurate with the skin depth. _ o
analysis of composite structures containing discontinuities The Second model is used in case of a very thin metallization
and/or three—dimensional (3-D) elements is necessary. Sif:9- €vaporated gold films of 200-nm thickness) where the
gle discontinuities with perfectly conducting metallization ofickness is less than the skin depth. The full discretization
finite thickness have been analyzed [4], [5], but only feWf such thin strips would severely and unnecessarily increase

papers (e.g., [6]) have taken the conductor loss of cascad@@ required memory and computation time. The skin effect
discontinuities into account. is irrelevant and the electrical field can be treated as homo-

In recent publications, various planar transmission ling¥neous inside the metallic strips. Under these assumptions,
have been investigated using the method of lines (MoL) [#ESIStive boundary condltlor_15 [_13], [14] are vglld and are used
[8], mostly employing a one-dimensional (1-D) discretizatiorf® m_odel the electrom_agnet!c field. T_he most m_u_aorta_nt feature
Losses and finite conductor thickness have been considePédlis new approach is the introduction of modified difference
for longitudinally homogeneous lines [9], [10]. Another MoLOP€rators.
approach using a two-dimensional (2-D) discretization dealt
with the investigation of CPW discontinuities, assuming thin Il. THEORY

and perfect conductors [11]. This approach was restricted ton the recently introduced approach for the analysis of
simple structures consisting of a few steps, because of gscaded microstrip discontinuities, the metallic strips are
perpendicular orientation of the discretization lines to thegnsidered as perfect conductors [12]. They are excluded
substrate. Recently, an efficient algorithm has been develoggsi the solution domain and from discretization. Hence, the
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the interfaces metal—air and metal-substrate are also treated as

dielectric interfaces. The field and the current distribution are o gl a: 8 .E H,
calculated inside the metallic strip, which may be arbitrarily 3 . & B W
thick. The difference operators are established for every point Y A0 s 0, W Rl
in the cross section and no reduction takes place. This rigorous & @ b a8 o9,
approach considers the skin-effect correctly. il T By H,

In the second conductor model, we assume a very small con-

ductor thickness. The surface current density is proportional : o ﬂﬂ
to the tangential electric field. As a consequence, the electric . dy oz
. . - I
and magnetic field components are coupled with each other : AO:e oy

and fulfill resistive boundary conditions [13]. As in the case
of perfect conductors, the strips themselves are excluded from .
the solution domain and the difference operators are reduced. =
Additionally, novel boundary conditions at the strips causery. 2. Discretization scheme of the cross section near a metallic strip with
modification of the corresponding elements of the differendeur different line systemse, o, &, A.

operators.

In the following analysis, we first summarize the general The cross section of each section is now subjected to a
potential and field equations valid for perfect conductoD discretization, the solution in propagation direction being
as well as for the two loss models. Then we use resisti@@alytical. For simplicity, only equidistant discretization is
boundary conditions to establish the novel modified differenttged to demonstrate the analysis. However, nonequidistant

operators for the loss model using thin conductors. discretization is employed in the computer algorithm. We use
four different line systems for the potentialg. and ¢, and

their derivatives (see Fig. 2).

_ _ The derivatives are determined by means of difference
In each longitudinally homogeneous section, the eleCtererators e.g.

magnetic field is derived from a vector potentiat

A. Basic Equations

99y — D, ®, (20)
with
where ¢, and ¢, fulfill coupled differential equations of the -1 1 i
Sturm-—Liouville type [8], [12]: : '
-1 1 0
9? 9? 9 _1(0¢s O,
— - I Y -1
9.2 Pz + By b+ & p <e, < 5 By )) D, — 1)
a (9 1
2 Y —
o2 o2 0 _1(0¢y O¢g
@%*@%“ra—y@ (a—y+ oz )) i 1 1l
9 (9, near a perfectly conducting metallic strip.
+enkdpy — %< 5’; ) =0. (3)

B. Resistive Boundary Conditions

The electromagnetic field components are given by In the following analysis, we shall establish these difference
—a¢, operators for cross sections containing thin lossy metallic
H, = a—y (4) strips. We need appropriate boundary conditions for the com-
3</>Z ponentsp,, and¢, of the Hertz potential at the strips. For thin
H, = 8; (5) conductors the following resistive boundary conditions
86, O, Jy| _[HI-HI| _ [E,
R T © ] =l | = 4
[0, .. ) with the strip thicknes$ and the conductivityy hold. Addi-
B = S %(57, divII) + ko%} (™) tionally, E,, E., H,, and¢, are continuous at the conducting
9 strips.
E,= —j% 8—(5;1div1'1) + k%d)y} (8) First the modified difference operatér™°? for computing
oLeY Jd¢y/0x near the strip is derived. It is needed for both
Mo g 11 differential equations (2) and (3) and fAf. . For the evaluation
Be=— ko | O (= d1v1‘1)] © o d¢,/0z, the value of¢, at the strip, namelyp, o (see

Fig. 2) is necessary. Since the metallic strip is treated as
where a free-space wavenumbép, and a free-space a resistive wall atz = 0 and excluded from the solution
impedancey, have been assumed. domain, we do not know the valyg, o and we have to use the
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resistive boundary condition (12) to determine it. Expressing The difference operator fod¢, /0y and the ones derived
the magnetic field components in (12) by means of the Hettzereof do not differ from those in the case of perfect con-
potential through (5) and (6) yields ductors because they do not involve any discretization points
1 . on the strip.
8_Z(¢’” —%) =otE; (13) In the limiting case of perfect conduction, the modified
oo 9l oo Al difference operators tend to the unmodified ones; e.g.,
—<—y - —y> + < L ’”) =otE,. (14) limr—oo D4 = D, which employs a Dirichlet boundary
Iz Iz dy dy condition at the upper and lower side of the strips. The
To eliminate the electric field components, we take the derivarodification of the difference operators affects all the potential
tive of (13) with respect tg; and substitute it into (14) using and some of the field equations.
(8) and (9). To take into account the derivative with respect to Apart from using the modified difference operators, the
» the forward and backward propagating waves are considessdution of the wave equation, the matching procedure, and the
separately. As the result is exactly the same for both wavesscading of the discontinuities by a generalized scattering-
it is also valid for any linear combination. All the termsmatrix approach are carried out as for perfectly conducting

containing¢, anddivII cancel and we obtain strips [12]. In this way, the approach presented here combines
dlI Sl the advantages of the original one [12], especially the analysis
-+ - - = jkonootepy o. (15) of cascaded discontinuities, with the features of advanced
Oz =0 Oz =0 modeling for lossy conductors.

As the derivatived¢;'/dz is not known at: = 0, it must be
linearly extrapolated from the valuég ; and¢, » (on the grid
points A in Fig. 2) together with the still unknows, o (in- Using the two alternative conductor models proposed above
dicated by a larger symbol). Similark%;/aa: is determined. a great variety of lossy coplanar circuits can be analyzed. To
Thus, employing a linear extrapolation @, /9= above and test the validity of the models we discuss some properties for
below the strip, we derive a finite-difference expression fdengitudinally homogeneous CPW's before presenting results
the left-hand side of (15), which finally yields the extrapolatetdr several circuit elements.
potential on the metallic strip as follows: First, the variation of the attenuation constantith the

_ _ conductor thickness is studied (Fig. 3) and compared with
_ P00 = —Ky2 + 4Ky + 4Ky 1 = Kfy2  (16) results of a quasi-TEM approach [3]. The results obtained
with by both models proposed in this paper are presented. For
1 the approximation with resistive boundary conditions and
= (17) modified difference operato®™°4, the agreement with [3] is
6+ j20tnohako good if the thickness is less than the skin depth 0.593 um,
but the values deviate far > 6. The model using complex

I1l. RESULTS

in the modified difference operatd?**? used for®,, shown

in (18), at the bottom of the page. , combining the two models employed here.

'F‘ the next step, we neeg. *divII on the strip for COM-" 1 order to verify the model with complex., the longitu-
puting E;, at« = *h, /2 and E, near the edges of the Strip. gina| component, of the current density is examined. Fig. 4
The calculation is done _V'£IZ using (9). We use a linear gn,\vs; - inside the center conductor of a CPW corresponding
extrapolatlo_n ofp,. to obtalnq)x and ¢, at the strip. Inserting to Section Il in Fig. 5.. is given at the two distanceg, yo
the values in (13), we obtaiff. o and also from the conductor’s edge and is normalized to its maximum

e divII = — Jko (o2 —3be1+3bs—1—ds_s]. (19) valuei,; aty;. The dn_‘ference between the calculated §k|n
2noat depthd. and the analytical valué for an unbounded metallic
This finite-difference expression is also used for the wavegion is less than 10%.
equations (2) and (3). The corresponding modified differenceA A/4 impedance transformer is chosen as an example for

computation time. The whole range of the thickness is covered,

operator exhibits a similar structure a)gglod in (18). a structure with thick lossy conductors. The influence of the

1 1 -
-1 1
K -1-4K -4K K

Dot = : (18)
-K 4K 1+4K -K
-1 1
L -1 1
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Fig. 3. Variation of attenuation constantof a CPW as a function of con-
ductor thickness (w/2 = 35 um, s = 50 um, &, = 12.9, ¢ = 3.602-107  Fig. 5. Magnitude of the scattering parameters of a CRYM impedance
Sim,d = 200 um, f = 20 GHz). transformer (see Fig. 1) with lossy and finite conductors compared with results
by the mode-matching technique (MMT) [6}:( = 20 gm, w2 = 15 um,
wg = 8 um, s1 = 5 pgm, s3 = 10 gm, s3 = 17 pgm, ! = 3.104 mm,
d =200 pm, s, = 12.9, 0 = 2-107 S/m,t = 3 pum).
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Fig. 4. Longitudinal component. of the current density in the center
conductor of a CPW at two different positiops = 2.63 um, yo = 6.44 um.
(wy = 15 pm, d = 200 pm, &, = 12.9,0 = 210" S/m,t = 3 pm).
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finite conductivity and thickness is clearly seen in the shift of C—»00
the resonant frequency of the reflection coefficient as well as in 25 modified Dy |
the decreasing amplitude of the transmission factor in Fig. 5. complex €,
The next example is a microshield short-end series stub -30
(Fig. 6) as proposed in [15]. The ohmic loss of the strips is 10 15 20 25 30 3540
considered by both methods described in this paper and the frequency [GHz] —w=—

resultlng scattering parameters are compared to the cas io.f6. Magnitude of the scattering parameters of a microshield short-end
perfect conductors. For lower frequencies, the results for t§&ies stuby = 25 um, s = 250 um, s2 = 80 pm, L = 2500 pm,

different models agree very well. For increasing frequency; = 200 um, d = 350 pum, &, = 1.1, 0 = 3.6 - 10"S/m,¢ = 0.5 pm).
when the skin depth becomes smaller compared to the conduc-
tor thickness, a deviation is visible. However, the performan

§sses, which can severely influence the performance of the
of the circuit element is much better described by the mocfels ' y P

using thin lossy conductors than by the simplified model (E)i;rcuit, are fully taken into account. It is possible to choose
perfect conductors. etween two different ways of treating the finite conductivity

depending on the ratio of the conductor thickness to the skin
depth. The first model is based on complex permittivity for
IV. CONCLUSION comparatively thick conductors. The second one employs the
Using the method proposed in this paper, various compositeite sheet admittance of thin conductors to derive special
CPW circuit elements are accurately analyzed. Conductoodified difference operators. Since it is not necessary to
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discretize the small thickness of the metallic strips, an efficient
analysis is guaranteed for discontinuities in a great variety B.fl]
CPW's.

The results for the attenuation constant and for the cur-
rent density of a CPW prove the validity of both propose&2
models. The scattering parameters for a coplanar quarter-
wave transformer and a short-end series stub in a microshiélgl
line computed by different analysis methods show very goqu]
agreement.
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